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Abstract

By combining the tetrahedron–octahedron approximation of the cluster variation method with a phenomenological expression for the
atomic interaction energies, the free energy of the Pd–H system is constructed for both the disordered and chalcopyrite phases. The
atomic interaction energies are most conveniently described as the sum of configuration-dependent and -independent contributions. The
former originates from chemical atomic interactions while the latter is due to the elastic energy associated with the lattice expansion
induced by the dissolution of hydrogen. In the high temperature region, the experimentally observed miscibility-gap type phase diagram is
reproduced. The phase separation is caused by the configuration-independent elastic energy contribution. The temperature dependences of
the grand potentials of disordered and chalcopyrite phases indicates that an order–disorder transition takes place at 216 K at |50 at% with
weakly second order. The stabilization of the ordered phase is due to the configuration-dependent energies. The site occupancies of
hydrogen in the chalcopyrite phase, which consists of two sublattices, a and b, are investigated. It is confirmed that only one of the two
sublattices is predominantly occupied by hydrogen at low temperature. Four kinds of independent nearest neighbor pair correlations are
calculated and the higher order correlations, including distant pair and multibody correlations, are obtained.  2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Based on neutron diffraction and electron channeling
studies, it has been revealed that hydrogen atoms occupy
the octahedral interstitial sites in Pd [1,2]. As shown in
Fig. 1 in which the large and small circles indicate,
respectively, Pd atoms and octahedral interstitial sites, the
octahedral interstitial sites themselves form a fcc lattice.
Hence, to a good approximation, the phase equilibrium for
Pd–H can be reduced to that of considering only the
H–Vacancy (hereafter abbreviated as Va) subsystem in the
fcc lattice surrounded by Pd atoms.

For the Pd–H system, the high temperature portion of
the phase equilibria is well established and the various
experimental results indicate a miscibility gap due to phase
separation [3]. Based on both experimental and theoretical
investigations [4–10], it has been revealed that the phase
separation is caused by an indirect H–H interaction which

Fig. 1. A unit cell of a fcc lattice and octahedral interstitial sites. A largeis the long range elastic interaction originating from the
black circle indicates a Pd atom while small circles are octahedrallattice expansion due to the absorption of hydrogen.
interstitial sites forming a fcc lattice. When the fcc unit cell formed by
interstitial sites are doubled, white and black small circles form a

*Corresponding author. sublattice points, a and b of a Chalcopyrite structure. Four kinds of
E-mail address: tmohri@eng.hokudai.ac.jp (T. Mohri). distinguishable pairs are indicated by AA, AB1, AB2 and BB.
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In fact, as has been discussed previously, the non- Such information of higher order atomic correlations
Emonotonic variations of excess enthalpy, H , and entropy, should be essential in clarifying the occupation andH

ES , with concentration which were experimentally as- diffusion mechanisms of hydrogen, which provides theH

sessed [11] for the Pd–H system suggest the significance basic knowledge in developing high storage hydrogen
of such an interaction between hydrogens. Yet, a detailed materials. The organization of the present report is as
analysis of the excess thermodynamic quantities also follows. In the next section, the theoretical back ground is
indicates the existence of interactions between hydrogen described. The major results are presented in the third
and Va with the same order of magnitude. Such an section together with a brief discussion.
interaction between unlike pairs is expected to induce
ordering reactions in the low temperature region and this
expectation is confirmed by the observation of a broad (1, 2. Theoretical background
1/2, 0) superlattice reflection in single crystal neutron
diffraction experiments. For a recent review of the ex- 2.1. Energetics
perimental results on this ‘50 K anomaly’ (see Ref. [20]).

Commencing with the classic work of Lacher [21], there In the present study, the total energy is obtained from
have been many previous attempts at a theoretical calcula- the experimental measurements [11] of relative hydrogen

+tion of the high temperature miscibility gap part of the chemical potential Dm over a wide temperature range,HPd–H phase diagram but, to our knowledge, only Ross and
r 2 rco-workers [22,23] have attempted to model both the m+ 1 / 2]]Dm 5lim RT ? ln p (1)H FS D GJH H2phase separation and ordering reactions. By using first rr→0

(V ) and second (V ) neighbour pair interaction energies2,1 2,2 where R is the gas constant, T the temperature, p theH2with V 50.25V Bond and Ross [22] showed, in a2,2 2,1 , hydrogen pressure, r the hydrogen/metal ratio defined asMonte Carlo calculation, how the essential features of the
r 5 x /x with x x the concentration of hydrogens dH Pd H Pdobserved low temperature ordering part of the phase
(Palladium) and r is the chosen maximum value of r. It ismdiagram could be reproduced. Later, Picton et al. [23] +noted that Dm refers to the infinitely dilute solution and isHextended these calculations to cover both high and low Erelated with partial excess chemical potential m through,Htemperature regions by adding on a long-range interaction

which was assumed to decrease linearly with H con- r 2 rmE 1 / 2 +]]m 5 RT ? ln p 2 Dm (2)FS D GH H Hcentration. 2r
In this work we have adopted a somewhat different

Since the relative partial enthalpy is given asapproach which uses the cluster variation method [13]
(hereafter CVM) for the calculation of the configurational- 1 / 2

≠ ln pH2free energy and which utilises a more realistic separation ¯ ]]]DH 5 R ? (3)H 1of the total internal energy into configuration-dependent
]S D≠ Tand -independent contributions. Recently, we have shown

how this approach can successfully reproduce the high the integration provides the relative integral enthalpy as
temperature portion of the phase diagram [12] and the

rmain objective of the present investigation was to explore
¯the low temperature portion of the phase diagram using the DH 5E DH ? dr (4)H H

same energy parameters employed in the calculation for o

the high temperature portion. In this way, we hoped to
which is regarded here as also being the total internalobtain a description of both the high and low temperature
energy of the system, DE, to be employed for the theoret-regions within a single theoretical framework. E +ical calculation. Note that both m and Dm can beH HThe power of the CVM is its ability to incorporate a
separated into enthalpic and entropic contributions.wide range of atomic correlations which play an essential

In the present study, the internal energy is most conveni-role in the order–disorder transition through pair and
ently expressed as the sum of two contributions in themultisite correlation functions [14,15] in the free energy
following way [12],formula. The optimized correlation functions provide

detailed information of the atomic configurations beyond a DE 5 E 1 E (5)NC C
single site occupation. This is by no means accessed by a
simple lattice gas model. The major focus of the present where E and E are, respectively, configuration-indepen-NC C

study is placed in the vicinity of the 1:1 stoichiometric dent (non-configurational) energy and configuration-depen-
composition for which the chalcopyrite type ordered phase dent (configurational) energy. The former is due to the
is expected to be stabilized. The present study determines elastic energy contribution originating from the expansion
not only the preferential site of hydrogen (single site of the Pd lattice caused by the absorption of hydrogen.
correlation) but also pair and many body site correlations. Continuum elasticity theory [16] is utilized to determine
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the non-configurational energy contribution in a series phase equilibria in an alloy system with high accuracy. The
expansion of concentration as follows, level of the approximation depends on the largest cluster

selected. In a conventional CVM calculation for fcc-based
imax

systems, the tetrahedron cluster is employed as the largestiE r,T 5O a T ? j (6)s d s dNC i 1 cluster (T approximation), while in the present study thei50

higher order tetrahedron–octahedron approximation
where the point correlation function, j , is linearly related1 [14,15] (hereafter T–O approximation) is employed. This
to the concentration, r, through r 5 (1 /2) ? 1 1 j , and thes d1 is because the T approximation is unable to incorporate the
coefficient term a T is further expanded in terms ofs di second nearest neighbor pair interaction energy, v ,2,2temperature, T, as which is not negligible as was indicated above and plays

nmax an essential role in stabilizing the underlying ordered
na T 5O b ? T (7)s d phase.i n

n50 The entropy formula for a disordered solid solution
It was demonstrated [11] that a satisfactory fitting is within the T–O approximation is written as

achieved with i 5 4 and n 5 5 over the temperaturemax max S 5 k ? lnBrange of T5100–600 K.
8The origin of the configuration-dependent energy stems P (N ? z )! P (N ? x )!S Dijk iS D

ijk ifrom chemical interactions among the hydrogen atoms and ]]]]]]]]]]]]]]]3 2 6
vacancies and these are regarded as short ranged interac- P (N ? v )! P (N ? w )! P (N ? y )!ijklmn ijkl ijS DS D S D

ijklmn ijkl ijtions. The description of the chemical interaction energy
(9)can be most efficiently carried out in the framework of the

Cluster Expansion Method [17] (hereafter CEM) in the where x , y , z , w and v are cluster probabilitiesi ij ijk ijkl ijklmnfollowing way, of finding an atomic arrangement specified by the
subscripts on point, pair, triangle, tetrahedron and oc-E j ,T 5O v ? j (8)sh j dC i i i tahedron clusters, respectively. For an ordered phase, thei

division of the parent lattice into sublattices increases the
where v and j are the effective interaction energy andi i number of configurational variables and it is more conveni-
correlation function for a cluster specified by subscript i.

ent to employ correlation functions rather than cluster
The correlation function, j , is defined as the ensemblei probabilities. It has been demonstrated that the cluster
average of the spin operator j 5 ks ? s ? ? ? s l, wherei p p p1 2 i probability and a set of correlation functions are linearly
s is the spin operator and takes either 11 or 21 for Hp related through
and Va, respectively. Note that the point correlation

1function is equivalent to the concentration, which guaran- d d 9h jh j ]X 5 1 1 O V n,s,d ;n9,s9,d 9 ? j (10)s dnJ ,n,s n9,s9h j H Jtees the linear relationship mentioned above. 2 n9,s9,d 9

The key of the CEM is that a set of correlation functions
where J designates the atomic configuration on a s-typeh jprovides an orthonormal basis in the thermodynamic
of n-points cluster located on sublattice points indicated byconfiguration space and the coefficient terms n areh ji
d and V n,s,d ;n9,s9,d 9 is the sum of the product ofh j s duniquely determined. The conventional ingredient for

subscripts in J . It is noted that the sum is taken only for ah jdetermining the effective interaction energies is to operate
cluster specified by n9,s9,d 9 contained in the clusters dthe CEM on a selected set of ordered compounds for
n,s,d . Instead of further providing mathematical formulae,s dwhich the total energies are calculated from electronic

we give an example for tetrahedron cluster probabilities instructure calculations. In the present study, however, trial-
a chalcopyrite ordered phase which is our main concern ofand-error method is employed on an extracted configura-
the present study,tional energy E . A well educated guess determined thatC

22 24v 56.08310 Ryd, v 57.599310 Ryd and v 5 12,1 2,2 3,1 aabb a b aa
23 ]w 5 h1 1 (i 1 j) ? j 1 (k 1 l) ? j 1 ij ? jijkl 4 1 1 222.84310 Ryd, where v and v are, respectively, ith2,i 3,1 2

nearest neighbor effective pair interaction and nearest ab bb
1 (ik 1 il 1 jk 1 jl) ? j 1 kl ? j 1 (ijk 1 ijl)2 2neighbor triangle effective interaction energies. It was

aab abb aabbconfirmed that these values achieve fairly satisfactory ? j 1 (ikl 1 jkl) ? j 1 ijkl ? j j. (11)3 3 4

fittings over a wide range of temperature and concentration
[12]. Note that, in the actual calculation of Eq. (11), the

numbers 11 and 21 are assigned to subscripts i, j,k . . .
2.2. Cluster Variation Method for H and Va, respectively.

Then, the free energy functional of the system is
The Cluster Variation Method has been recognized as formulated in terms of a set of correlation functions under

one of the most powerful theoretical tools for calculating a given set of a (or b ) and v in Eqs. (6)–(8). Then,h j h j h ji n i
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the equilibrium state of both the phases is determined The configuration-dependent energies which were de-
through scribed in the previous section yield the following ratios,

V /V 5 0.25 and V /V 5 2 0.35, where V and V2,2 2,1 3,1 2,1 2,1 2,2dis
≠F are defined in the Section 1 and V are effective three3,1]] 5 0 (12)U

T, j≠ jh j h j±ij body interaction energy. Note that v , v and v in thei 2,1 2,2 3,1

previous section are obtained by multiplying V , V and2,1 2,2for a disordered phase and
V , respectively, by the number of corresponding cluster3,1

chal per a lattice point. According to the ground state analysis≠F
]]] 5 0 (13)Udh j within the first and second nearest neighbor pair interac-d 9T, j≠ jh j h jj±ii

tions which was performed by Richard and Cahn [18] for
for a chalcopyrite ordered phase. The free energy is further fcc-based ordered compounds, three types of ordered
transformed to the grand potential by a Legendre trans- phases are possibly stabilized at 1:1 stoichiometry depend-
formation and the equality of the grand potential of the two ing upon the ratio of V /V which is referred to as the a2,2 2,1
phases determines the phase equilibria. value. These are L1 , chalcopyrite and L1 phases for0 1

It is emphasized that the key ingredient of the present a # 0, 0 # a # 1/2 and a # 1/2, respectively. Therefore,
study is that the long-range interaction is described in the present results with a 5 0.25 predicts the appearance
terms only of concentration and is separated out from the of the chalcopyrite ordered phase, although the strong three
short-ranged chemical interaction for which the CVM is body interaction, V v , demands a careful analysis. Thes d3,1 3,1
used. Thereby, the long-range elastic interaction beyond electronic structure calculation performed on Pd–H system
the basic cluster is tacitly incorporated into the free energy by Wang et al. [19] also indicates that chalcopyrite phase is
formula. stabilized over other competing ordered phases at the 1:1

stoichiometry. Hence, we focus on the disorder–chal-
copyrite phase equilibria in the low temperature portion.

3. Results and discussion The disorder–order transition temperature is calculated
at a constant chemical potential of m 5 0.0at which the

Shown in Fig. 2 [12] are the concentration dependency concentration is nearly fixed at 50 at%. The results of the
of the internal energy, DE r , at T5450 K and its temperature dependency is shown in Fig. 3. The phases d
decomposition into non-configurational (E r ) and con- transition temperature, obtained as an intersection (equali-s dNC

figurational (E r ) energy terms. One notices that both ty) of the two grand potentials, is 216 K and a clears dC

non-configurational and configurational energy contribu- intersection at the transition temperature indicates that the
tions are fairly large with opposite signs, which results in order of the transition is of first order.
the total energy DE r having a slightly negative value at A unit cell of chalcopyrite structure is described as thes d
this temperature. The opposing tendency of the two stacking of the two fcc unit cells in the z-direction with an
contributions indicates that the system drives phase sepa- antiphase plane inserted in the middle of the cell. One
ration reactions at high temperatures where the entropy readily understands that the symmetry is different between
becomes significant, whereas at low temperatures an the z-direction and the other two directions (x- and y-
ordering reaction takes place due to the large con- direction). The small circles in Fig. 1, therefore, constitute
figuration-dependent contribution. only one half of the unit cell, and the small white and

black circles distinguish the two types of sublattice of the

Fig. 2. Concentration variation of internal energy, DE, at 450 K and the
decomposition to configuration-independent (non-configurational), E , Fig. 3. Temperature variation of grand potentials for chalcopyriteNC

and configuration-dependent (configurational), E contributions. [12]. (Chalco.) and disordered (Disorder) phases.C
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chalcopyrite phase, i.e., a- and b-sublattice points, respec-
tively.

As was mentioned in the previous section, the minimiza-
tion of the free energy provides a set of correlation
functions at an equilibrium state. Substitution of the
correlation functions into Eq. (10) provides the equilibrium
cluster probabilities. Shown in Fig. 4 is the occupation
probability of hydrogen on the a (ALPHA) and b (BETA)
sublattices as a function of temperature. The occupation
probability is equivalent to the single site cluster probabili-

a bty and corresponds with X and X which are obtained1,1 1,1
a bfrom the equilibrium values of j and j , respectively,1 1

through Eq. (10). The concentration of hydrogen(CONC)
in the entire lattice is also indicated. The results confirm
that a particular sublattice (b) is predominantly occupied in Fig. 5. Temperature dependences of four kinds of nearest neighbor pair
the low temperature range with the two occupation prob- cluster probabilities. AA, BB, AB1 and AB2 correspond those in Fig. 1.
abilities gradually approaching each other near the transi-
tion temperature, finally coinciding at the transition tem-
perature. The discontinuity at the transition temperature is Beyond the nearest neighbor pair correlation, one can
another indication of the first-order transition. obtain higher order correlations up to octahedron correla-

As an example of a higher order site correlation, the pair tions by the T–O approximation of the CVM. In the
correlation functions are calculated. It is noted that the present study, however, we simply demonstrate next
symmetry of the chalcopyrite structure requires distin- nearest neighbor pair and triangle cluster probabilities in
guishing between four kinds of pair cluster. This is because Figs. 6 and 7. Unlike the case of nearest neighbor pair, the
the a2a and b2b clusters are confined in the z–x (or next nearest a2b pairs are confined to the z–x ( y) plane
z–y) plane while the two types of a2b clusters should be and, therefore, one needs to distinguish only three kinds of
distinguished since a a2b pair extends in both z–x (z–y) pairs. The entire tendency is quite similar to that of nearest
and x–y directions and these are of different symmetry. neighbor pairs. Although it is not shown explicitly, it is
Indicated in Fig. 1 are the clusters for AA (a2a), BB worth mentioning that nearest neighbor and next nearest
(b2b) and AB1 and AB2 (two kinds of a2b), and each neighbor pair correlations in the disordered state are
probability is shown in Fig. 5. One sees that the pre- opposite in sign, which indicates that the H–Va pair is
dominant pairs are over the b2b sublattice points and the predominant for the nearest neighbor pair while H–H and
two kinds of a2b pairs are virtually indistinguishable. Va–Va are dominant for the next nearest neighbor pair.
Again, all the pairs are indistinguishable above the transi- Fig. 7 indicates that a degeneracy of the nearest neighbor
tion temperature merging into |25% which can be under- triangle configuration for a disordered phase is lifted to
stood since the entire concentration is |50%. two kinds of configuration for a chalcopyrite phase, i.e.,

a2a2b (3AAB) and a2b2b (3ABB). It is interesting

Fig. 4. Temperature dependency of occupation probability for a Fig. 6. Temperature dependences of three kinds of next nearest neighbor
(ALPHA) and b (BETA) sublattice points in a chalcopyrite structure. The pair cluster probabilities. 2AA, 2BB and 2AB indicate the next nearest
concentration (CONC) of the entire lattice is also indicated. a2a, b2b and a2b pair cluster, respectively.
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